Dodecagonal quasicrystalline order in a diblock copolymer melt.

نویسندگان

  • Timothy M Gillard
  • Sangwoo Lee
  • Frank S Bates
چکیده

We report the discovery of a dodecagonal quasicrystalline state (DDQC) in a sphere (micelle) forming poly(isoprene-b-lactide) (IL) diblock copolymer melt, investigated as a function of time following rapid cooling from above the order-disorder transition temperature (TODT = 66 °C) using small-angle X-ray scattering (SAXS) measurements. Between TODT and the order-order transition temperature TOOT = 42 °C, an equilibrium body-centered cubic (BCC) structure forms, whereas below TOOT the Frank-Kasper σ phase is the stable morphology. At T < 40 °C the supercooled disordered state evolves into a metastable DDQC that transforms with time to the σ phase. The times required to form the DDQC and σ phases are strongly temperature dependent, requiring several hours and about 2 d at 35 °C and more than 10 and 200 d at 25 °C, respectively. Remarkably, the DDQC forms only from the supercooled disordered state, whereas the σ phase grows directly when the BCC phase is cooled below TOOT and vice versa upon heating. A transition in the rapidly supercooled disordered material, from an ergodic liquid-like arrangement of particles to a nonergodic soft glassy-like solid, occurs below ∼40 °C, coincident with the temperature associated with the formation of the DDQC. We speculate that this stiffening reflects the development of particle clusters with local tetrahedral or icosahedral symmetry that seed growth of the temporally transient DDQC state. This work highlights extraordinary opportunities to uncover the origins and stability of aperiodic order in condensed matter using model block polymers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifshitz points in blends of AB and BC diblock copolymers

– We consider microand macro-phase separation in blends of AB and BC flexible diblock copolymers. We show that, depending on architecture, a number of phase diagram topologies are possible. Microphase separation or macrophase separation can occur, and there are a variety of possible Lifshitz points. Because of the rich parameter space, Lifshitz points of multiple order are possible. We demonstr...

متن کامل

Microphase separation in polyelectrolytic diblock copolymer melt: weak segregation limit.

The authors present a generalized theory of microphase separation for charged-neutral diblock copolymer melt. The stability limit of the disordered phase for salt-free melt has been calculated using random phase approximation (RPA) and self-consistent-field theory (SCFT). Explicit analytical free energy expressions for different classical ordered microstructures (lamellar, cylinder, and sphere)...

متن کامل

ar X iv : c on d - m at / 0 10 10 22 v 1 [ co nd - m at . s of t ] 3 J an 2 00 1 Ordered Morphologies of Confined

We investigate the ordered morphologies occurring in thin-films diblock copolymer. For temperatures above the order-disorder transition and for an arbitrary two-dimensional surface pattern, we use a Ginzburg-Landau expansion of the free energy to obtain a linear response description of the copolymer melt. The ordering in the directions perpendicular and parallel to the surface are coupled. Thre...

متن کامل

Ordering at two length scales in comb - coil diblock copolymers consisting of only two different monomers

The microphase separated morphology of a melt of a specific class of comb-coil diblock copolymers, consisting of an AB comb block and a linear homopolymer A block, is analyzed in the weak segregation limit. On increasing the length of the homopolymer A block, the systems go through a characteristic series of structural transitions. Starting from the pure comb copolymer the first series of struc...

متن کامل

Diblock copolymer ordering induced by patterned surfaces

– We use a Ginzburg-Landau free energy functional to investigate diblock copolymer morphologies when the copolymer melt interacts with one surface or is confined between two chemically patterned surfaces. For temperatures above the order-disorder transition a complete linear response description of the copolymer melt is given, in terms of an arbitrary two-dimensional surface pattern. The appear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 19  شماره 

صفحات  -

تاریخ انتشار 2016